Optimal Quantum Measurement Design on Speech Signal: Blind Minimax Estimator Improving MSE Over LS Estimators

نویسندگان

  • S. Karthikeyan
  • P. Ganesh Kumar
  • S. Sasikumar
چکیده

We consider the problem of estimating an unknown, deterministic speech signal parameters based on quantum measurements corrupted by white Gaussian noise. We design and analyze blind minimax estimator (BME), which consist of a bounded parameter set. Using minimax estimator, the parameter set is itself estimated from quantum measurements. Thus, our approach does not require any prior knowledge of bounded parameters, and the designed estimator can be applied to any linear regression problem. We demonstrate analytically that the BMEs strictly dominate the least-square (LS) estimator, i.e., they achieve lower mean-squared error (MSE) for any speech signal. Our approach can be readily compared with wide class of nonlinear estimators like James Stein’s estimator, which is defined for white noise. The result suggest that over a wide range of samples and signal to noise ratio the mean square error for Ellipsoidal Blind Minimax Estimator(EBME) is lower when compared with linear and non-linear estimators. KeywordsQuantum measurements, Minimax Estimator, White Gaussian noise, linear regression, Mean square error, Biased Estimation

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Minimax Optimality of Block Thresholded Wavelets Estimators for ?-Mixing Process

We propose a wavelet based regression function estimator for the estimation of the regression function for a sequence of ?-missing random variables with a common one-dimensional probability density function. Some asymptotic properties of the proposed estimator based on block thresholding are investigated. It is found that the estimators achieve optimal minimax convergence rates over large class...

متن کامل

A Narrative Approach for Speech Signal Based Mmse Estimation Using Quantum Parameters

In this paper, the performance of different estimators in estimating the speech signal through Quantum parameters can be analyzed. The main objective is to estimate the speech signal by a set of linear and Non-linear estimators that are proposed to be efficient in performance. The Minimax mean square error estimator is designed to minimize the worst-case MSE. In an estimation context, the objec...

متن کامل

A Competitive Minimax Approach to Robust Estimation in Linear Models

We consider the problem of estimating, in the presence of model uncertainties, a random vector x that is observed through a linear transformation H and corrupted by additive noise. We first assume that both the covariance of x and the transformation H are not completely specified, and develop the linear estimator that minimizes the worst-case mean-squared error (MSE) across all possible covaria...

متن کامل

Truncated Linear Minimax Estimator of a Power of the Scale Parameter in a Lower- Bounded Parameter Space

 Minimax estimation problems with restricted parameter space reached increasing interest within the last two decades Some authors derived minimax and admissible estimators of bounded parameters under squared error loss and scale invariant squared error loss In some truncated estimation problems the most natural estimator to be considered is the truncated version of a classic...

متن کامل

Covariance shaping least-squares estimation

A new linear estimator is proposed, which we refer to as the covariance shaping least-squares (CSLS) estimator, for estimating a set of unknown deterministic parameters x observed through a known linear transformation H and corrupted by additive noise. The CSLS estimator is a biased estimator directed at improving the performance of the traditional least-squares (LS) estimator by choosing the e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012